Lesson Volume of
 15.2 Rectangular Prisms

EXPLORE ACTIVITY

6.G. 2

Using Fractional Edge Lengths

A cube with edge length 1 unit and volume 1 cubic unit is filled with smaller cubes as shown.

A How many small cubes are there?
How does the combined volume of the small cubes compare to the volume of the large cube?

What is the volume of one small cube? \qquad cubic unit(s)

B Each edge of the large cube contains \qquad small cubes.

Number of small cubes per edge .Edge length of one small cube	$=$Edge length of large cube
	$\cdot ?$

What is the edge length of one small cube? \qquad unit(s)

C Complete:
Each small cube has edge length \qquad unit(s) and
volume \qquad cubic unit(s).

D The formula for volume of a cube with edge length ℓ is $V=\ell \cdot \ell \cdot \ell$, or $V=\ell^{3}$. Find the volume of one small cube using this formula.
$V=$ \qquad $=$ \qquad

Reflect

1. Several of the small cubes in the Explore Activity are arranged into a medium-sized cube as shown.

Show two different ways to find the volume of this cube.

\qquad
\qquad
\qquad
\qquad

Finding Volume

A rectangular prism has six faces. Any pair of opposite faces can be called the bases of the prism.

Volume of a Rectangular Prism

$V=\ell w h$, or $V=B h$
(where B represents the area of the prism's base; $B=\ell w$)

EXAMPLE 1

Find the volume of the rectangular prism.

$$
\begin{array}{rlrl}
\ell & =3 \text { meters } \quad w=2 \frac{1}{4} \text { meters } \quad h=4 \frac{1}{2} \text { meters } \\
V & =\ell w h & \\
& =3 \cdot 2 \frac{1}{4} \cdot 4 \frac{1}{2} & & 3 \cdot \\
& =3 \cdot \frac{9}{4} \cdot \frac{9}{2} & & \text { Write each mixed number as } \\
& & \text { an improper fraction. } \\
& =30 \frac{3}{8} \text { cubic meters } & & \text { Write as a mixed number in simplest form. }
\end{array}
$$

YOUR TURN

Find the volume of each rectangular prism.
2.

3. length $=5 \frac{1}{4}$ inches
width $=3 \frac{1}{2}$ inches
height $=3$ inches

Personal Math Trainer Online Assessment and Intervention

Solving Volume Problems

When you solve a real-world problem involving the volume of a prism, you can choose to use either of the volume formulas you know.

EXAMPLE 2

A terrarium is shaped like a rectangular prism. The prism is $25 \frac{1}{2}$ inches long, $13 \frac{1}{2}$ inches wide, and 16 inches deep. What is the volume of the terrarium?

STEP 1 Choose one side to be the base, and find its area.

$$
\begin{aligned}
B & =25 \frac{1}{2} \times 13 \frac{1}{2} \\
& =\frac{51}{2} \times \frac{27}{2} \\
& =\frac{1,377}{4}
\end{aligned}
$$

STEP 2 Find the volume.
Use the $25 \frac{1}{2}$-inch by $13 \frac{1}{2}$ - inch face as the base.

The area of the base is $\frac{1,377}{4}$ square inches. You need to perform another operation, so you don't need to write this value as a mixed number.

$$
\begin{array}{rlrl}
V & =B h & \\
& =\frac{1,377}{4} \times 16 & \begin{array}{l}
\text { Substitute } \frac{1,377}{4} \text { for } \\
\text { Band } 16 \text { for } h .
\end{array} \\
& =\frac{1,377}{1^{4}} \times \frac{16^{4}}{1} & & \text { Simplify before multiplying. } \\
& =5,508 & &
\end{array}
$$

. The volume of the terrarium is 5,508 cubic inches.

YOUR TURN

4. A rectangular swimming pool is 15 meters long, $10 \frac{1}{2}$ meters wide, and $2 \frac{1}{2}$ meters deep. What is its volume?

\qquad

Guided Practice

A large cube is made up of smaller unit cubes as shown on the right. Each small cube has an edge length of $\frac{1}{2}$ unit. (Explore Activity)

1. Each edge of the large cube is \qquad units.
2. The volume of the large cube is \qquad cubic units.

Find the volume of each prism. (Example 1)
3.

\qquad \times \qquad \times \qquad
$=$ \qquad cubic meters
5.

4.
 $\times \ldots=$ \qquad m^{2}
$V=$ \qquad cubic meters

$$
B=
$$

\qquad
6.

$V=$ \qquad cubic inches
$V=$ \qquad cubic feet
7. A cereal box is $8 \frac{1}{2}$ inches long, $3 \frac{1}{2}$ inches wide, and 12 inches high.

What is the volume of the box? (Example 2) \qquad

ESSENTIAL QUESTION CHECK-IN

8. Which two formulas can you use to find the volume of a rectangular prism? Why are these two formulas equivalent?
\qquad
\qquad
\qquad

15.2 Independent Practice

9. A block of wood measures 4.5 inches by 3.5 inches by 7 inches. What is the volume of the block of wood?
10. A restaurant buys a freezer in the shape of a rectangular prism. The dimensions of the freezer are shown. What is the volume of the freezer?
\qquad
11. Rectangular prism A measures 6 inches by 4 inches by 5 inches.

Rectangular prism B's dimensions are twice those of prism A. Find the volume of each prism. How many times as great is prism B's volume as prism A's volume?
12. Leticia has a small paper weight in the shape of a rectangular prism. The dimensions of the paper weight are shown. What is the volume of the paper weight?
13. A company is designing a juice box. The box is in the shape of a rectangular prism. The base of the box is $6 \frac{1}{2}$ inches by $2 \frac{1}{2}$ inches, and the box is 4 inches high. If juice fills 90% of the box's volume, find the
 volume of juice in the box.
14. Science Density is the amount of mass in a certain volume of an object. To find the density in grams per cubic centimeter of a substance you can use this relationship:

Density $=\frac{\text { mass in grams }}{\text { volume in cubic centimeters }}$
A gold bar that is 16 centimeters by 2.5 centimeters by 5 centimeters has a density of 19.3 grams per cubic centimeter. What is the mass of the gold bar?
15. A suitcase is a rectangular prism whose dimensions are $1 \frac{1}{4}$ feet by $1 \frac{3}{4}$ feet by $1 \frac{1}{4}$ feet. Find the volume of the suitcase.

16. The Smith family is moving and needs to decide on the size of the moving truck they should rent.
a. A moving van rents for $\$ 94.50$ per day, and a small truck rents for $\$ 162$ per day. Based on the amount of space inside the van or truck, which is the better deal? Explain your answer.
\qquad
\qquad
\qquad

Inside Dimensions of Trucks			
Type	Length (ft)	Width (ft)	Height (ft)
Van	$10 \frac{1}{2}$	6	6
Small Truck	12	8	$6 \frac{3}{4}$
Large Truck	20	$8 \frac{3}{4}$	$8 \frac{1}{2}$

b. How much greater is the volume of the large truck than the volume of the small truck?
c. The family estimates that they need about 1,100 cubic feet to move their belongings. What should they rent?

17. Persevere in Problem Solving A cube has a volume of $\frac{1}{512}$ cubic meter. What is the length of each side of the cube? Explain your thinking.
\qquad
\qquad
18. Communicate Mathematical Ideas Think about two rectangular prisms, one labeled prism P and one labeled prism Q.
a. Suppose the bases of the prisms have the same area, but the height of prism Q is twice the height of prism P. How do the volumes compare?
b. Suppose the area of the base of prism Q is twice the area of the base of prism P. How do the volumes compare?
19. Critical Thinking The dimensions of a rectangular prism are $3 \frac{1}{4}$ feet by $2 \frac{1}{2}$ feet by 5 feet. Lee found the volume by multiplying $12 \frac{1}{2}$ by $3 \frac{1}{4}$. Lola found the volume by multiplying $16 \frac{1}{4}$ by $2 \frac{1}{2}$. Who is correct? Explain.

