LESSON

Solving Area Equations

Reteach

You can use area formulas to find missing dimensions in figures.

The formula for area of a parallelogram is A = bh.

The formula for area of a trapezoid is $A = \frac{1}{2}h(b_1 + b_2)$.

The formula for area of a rhombus is $A = \frac{1}{2} d_1 d_2$.

The formula for area of a triangle is $A = \frac{1}{2}bh$.

Suppose you know the area of a triangle is 28 square feet. You also know the length of the base of the triangle is 7 feet. What is the height of the triangle?

Use the formula for area of a triangle. $A = \frac{1}{2}bh$

Substitute known values. $28 = \frac{1}{2}(7)h$

Multiply both sides by 2. 56 = 7hDivide both sides by 7. 8 = h

The height of the triangle is 8 feet.

Solve.

- 1. The area of a parallelogram is 150 square meters. The height of the parallelogram is 15 meters. What is the length of the parallelogram?
- 2. The length of one diagonal of a rhombus is 8 cm. The area of the rhombus is 72 square centimeters. What is the length of the other diagonal of the rhombus?
- 3. The area of a triangle is 32 square inches. The height of the triangle is 8 inches. What is the length of the base of the triangle?
- 4. The area of a rectangle is 34 square yards. The length of the rectangle is 17 yards. What is the width of the rectangle?
- 5. The area of a trapezoid is 39 square millimeters. The height of the trapezoid is 6 millimeters. One of the base lengths of the trapezoid is 5 millimeters. What is the length of the other base of the trapezoid?

- 5. You could change all the areas to one unit, say square inches, by multiplying square yards by 36×36 and square feet by 12×12 . Then you could add the areas.
- 6. 18.7 cm²
- 7. $\frac{9}{10}$ in²
- 8. 23.25 cm²
- 9. 8.4 in.

Practice and Problem Solving: D

- 1. 1.5 cm²
- 2. 14 in²
- 3. 16 m²
- 4. 35 ft²
- 5. 36 cm²
- 6. 48 in²
- 7. 28 ft²
- 8.84 ft²
- 9. 600 vd²

Reteach

- 1. 12 cm²
- 2. 6 ft²
- 3. 15 m²
- 4. 9 mm²
- 5. 14 vd²
- 6. 20 in²

Reading Strategies

- 1. Use the formula $A = \frac{1}{2}bh$.
- 2. Substitute 10 for b; Substitute 4 for h.
- 3. 20 in²
- 4. 54 m²
- 5. 4.5 ft²
- Use the same formula but substitute for area and base in the second and third steps. Then solve for the height.

Success for English Learners

- 1. No, as long as both sides (base and height) meet at a right angle.
- 2. because of the Associative Property of Multiplication
- 3. 16 ft²

LESSON 13-3

Practice and Problem Solving: A/B

- 1. $600 = \frac{1}{2}b(20)$; The base is 60 ft.
- 2. $1,224 = \frac{1}{2}h\left(70\frac{1}{2} + 65\frac{1}{2}\right)$; The height

of the countertop is 18 in.

- 3. The width of the tabletop 3 ft.
- 4. The base is 30 cm.
- 5. The width of the door is 9 ft.

Practice and Problem Solving: C

- 1. 56 front frames
- 2. \$77.97
- 3. 20 cm and 5 cm
- 4. 225 yd
- 5. 120 triangular pieces

Practice and Problem Solving: D

- 1. 5 in.
- 2. $525 = \frac{1}{2}h(30 + 40)$; 15 ft
- 3. 14 in.
- 4. 20 in.
- 5. 5 cm
- 6.3 ft

Reteach

- 1. 10 m
- 2.18 cm
- 3. 8 in.
- 4. 2 yd
- 5. 8 mm

Reading Strategies

- 1. 5 in.
- 2.6 cm

Success for English Learners

- Write the formula for the area of the figure.
- 2. Substitute in known variables and solve for the missing variable.