Name	Date	Class
Area of Triangle	S	
Reteach		
To find the area of a triangle, first turn your triangle into a rectangle.		
	Next find the area of the	rectangle 6 • 3 – 18 square units
The triangle is half the area of the formed rectangle or $A = \frac{1}{2}bh$, so		
divide the product by 2.		
$18 \div 2 = 9$ So, the area of the triangle is 9 square units.		

Find the area of each triangle.

- 5. You could change all the areas to one unit, say square inches, by multiplying square yards by 36×36 and square feet by 12×12 . Then you could add the areas.
- 6. 18.7 cm²
- 7. $\frac{9}{10}$ in²
- 8. 23.25 cm²
- 9. 8.4 in.

Practice and Problem Solving: D

- 1. 1.5 cm²
- 2. 14 in²
- 3. 16 m²
- 4. 35 ft²
- 5. 36 cm²
- 6. 48 in²
- 7. 28 ft²
- 8. 84 ft²
- 9. 600 yd²

Reteach

- 1.12 cm^2
- 2. 6 ft²
- 3. 15 m²
- 4. 9 mm²
- 5. 14 yd²
- 6. 20 in²

Reading Strategies

1. Use the formula $A = \frac{1}{2}bh$.

- 2. Substitute 10 for *b*; Substitute 4 for *h*.
- 3. 20 in²
- 4. 54 m²
- 5. 4.5 ft²
- 6. Use the same formula but substitute for area and base in the second and third steps. Then solve for the height.

Success for English Learners

- 1. No, as long as both sides (base and height) meet at a right angle.
- 2. because of the Associative Property of Multiplication
- 3. 16 ft²

LESSON 13-3

Practice and Problem Solving: A/B

1.
$$600 = \frac{1}{2}b(20)$$
; The base is 60 ft.

- 2. 1,224 = $\frac{1}{2}h\left(70\frac{1}{2}+65\frac{1}{2}\right)$; The height of the countertop is 18 in.
- 3. The width of the tabletop 3 ft.
- 4. The base is 30 cm.
- 5. The width of the door is 9 ft.

Practice and Problem Solving: C

- 1. 56 front frames
- 2. \$77.97
- 3. 20 cm and 5 cm
- 4. 225 yd
- 5. 120 triangular pieces

Practice and Problem Solving: D

1. 5 in.

2.
$$525 = \frac{1}{2}h(30 + 40);$$
 15 ft

- 3. 14 in.
- 4. 20 in.
- 5. 5 cm
- 6. 3 ft

Reteach

- 1. 10 m 2. 18 cm
- 3. 8 in.
- 4. 2 yd
- 5. 8 mm

Reading Strategies

- 1. 5 in.
- 2.6 cm

Success for English Learners

- 1. Write the formula for the area of the figure.
- 2. Substitute in known variables and solve for the missing variable.

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.